| Home | E-Submission | Sitemap | Editorial Office |  
J Health Info Stat > Volume 40(2); 2015 > Article
J Health Info Stat 2015;40(2):13-22.
SPAN을 이용한 간경변증 발생 위험군 분류 평가
유영애 , 송기준
The Classification of Risk Group for Liver Cirrhosis Using SPAN
Young Ae Yu , Ki Jun Song
The statistical predictive methods have been used to find the risk factors related with diseases and to generate predictive probabilities of those diseases. Logistic regression is the most commonly used method for predicting the probability of diseases in the medical fields. Also, data-driven methods, such as CART have been used to identify subjects at increased risk of diseases. However, both of regression and tree models have their specific limitations in spite of their advantages. Recently, an alternative approach called by search partition analysis (SPAN) is suggested, which is based on direct non-hierarchical search algorithm to identify subgroups at risk. SPAN searches subgroups among different Boolean combinations of risk factors.
SPAN was compared against the performance of the other 3 methods; logistic regression, polychotomous regression and quick unbiased efficient statistical trees. We applied these methods to the real clinical data composed of 4,093 individuals who received the screening test in first and then visited Yonsei University Medical Center for check-up liver cirrhosis between May 1994 and September 2005. The performance of SPAN and that of any other methods were compared and the measures of performance were sensitivity, specificity, and accuracy.
In the results using SPAN, the findings identified by the risk factors for liver cirrhosis were HbsAg, AntiHCV, Family history, platelet and α-FP. And we found that the sensitivity using SPAN were much higher than those of other methods in various data sets.
In conclusion, as long as it works, the performance of SPAN should make sense in the context of medical diagnosis and prognosis. Also, It was known that SPAN had an advantage that its decision rules are usually more interpretable than those of other methods.
Key words: SPAN, Polychotomous regression, QUEST, Classification, Liver cirrhosis
PDF Links  PDF Links
Full text via DOI  Full text via DOI
Download Citation  Download Citation
Related article
Editorial Office
The Korean Society of Health Informatics and Statistics
680 gukchaebosang-ro, Jung-gu, Daegu, 41944, Korea
E-mail: koshis@hanmail.net
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Health Informatics and Statistics.                 Developed in M2PI