| Home | E-Submission | Sitemap | Editorial Office |  
top_img
J Health Info Stat > Volume 39(2); 2014 > Article
J Health Info Stat 2014;39(2):57-64.
간경변증환자의 비대상성 간경변증으로의 진행 예측모형
곽민정
Prediction Models for the Decompensation in Patients with Cirrhosis
Min Jung Kwak
ABSTRACT
Objectives:
This study is intended to find the significant prognostic factors for the prediction of hepatic decompensation with cirrhosis. Also, this study provides the proper cut off value for significant factors.
Methods:
232 patients with cirrhosis were investigated retrospectively from 1996 to 2010. Logistic regression and odds ratio estimates are used to find the most significant factors and the effects of those factors for the decompensation with cirrhosis. The decision tree model is adopted to find the proper cut off point for the most significant factor. The Cox’s proportional hazard regression model is used to consider the time to decompensation with prognostic factors.
Results:
The result of logistic regression shows that H/L ratio and prothrombin time are significant measures for decompensation. Moreover, H/L ratio is the most significant factor with AUROC 0.84 with odd ratio 29.94 in simple logistic regression. Also, Cox’s proportional hazard regression model using progression time to decompensation supports this result. ALT, Prothrombin time, H/L ratio and AST/ALT ratio show significant results and H/L ratio is the most significant prognostic factor in survival analysis. From decision tree model, 71.0% of the patients with H/L ratio above 0.5 are progressed to decompensation. At cut off value 0.5, sensitivity and specificity are 75.9% and 81.4%, respectively.
Conclusions:
Both the results of logistic regression and survival analysis show that H/L ratio is an important parameter to predict the progression to a decompenation state.
Key words: Decompensation, Cirrhosis, H/L ratio, Logistic regression, Survival analysis
TOOLS
PDF Links  PDF Links
Full text via DOI  Full text via DOI
Download Citation  Download Citation
Share:      
METRICS
1,160
View
26
Download
Related article
Editorial Office
The Korean Society of Health Informatics and Statistics
680 gukchaebosang-ro, Jung-gu, Daegu, 41944, Korea
E-mail: koshis@hanmail.net
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Health Informatics and Statistics.                 Developed in M2PI